KLASIFIKASI CURAH HUJAN DI KOTA MAKASSAR MENGGUNAKAN GRADIENT BOOSTING MACHINE (GBM)

  • Hardianti Hafid Department of Statistics, Universitas Negeri Makassar
  • Zulkifli Rais Department of Statistics, Universitas Negeri Makassar
  • Akhmad Rezky Ramadhana T Rezky UNM
Keywords: Curah Hujan, Gradient Boosting Machine, Klasifikasi, Machine Learning.

Abstract

Rainfall is one of the important parameters in determining the climate of an area. Makassar, as one of the largest cities in Indonesia, has varying rainfall patterns throughout the year. This research aims to classify rainfall in Makassar City using the Gradient Boosting Machine (GBM) method. The secondary data used in this study were obtained from the Meteorology, Climatology, and Geophysics Agency (BMKG), with predictor variables including wind speed, humidity, and air temperature, and the target variable being rainfall category, consisting of no rain, very light rain, light rain, moderate rain, heavy rain, and very heavy rain. To address class imbalance in the data, this study uses the Random Undersampling (RUS) technique. The GBM model with optimal hyperparameter configuration (n_estimators, learning_rate, max_depth, subsample, min_samples_leaf, max_features) achieved a classification accuracy rate of 98.46%, precision of 93%, recall of 98%, and F1-score of 95% with a training and testing data split of 80:20. The research results show that the GBM method is able to classify rainfall very well and can be used as a tool to assist in disaster mitigation planning and water resource management in Makassar City. 95% pada proporsi data pelatihan dan pengujian 80:20. Hasil penelitian menunjukkan bahwa metode GBM mampu mengklasifikasikan curah hujan dengan sangat baik dan dapat digunakan sebagai alat bantu dalam perencanaan mitigasi bencana serta pengelolaan sumber daya air di Kota Makassar.

References

BMKG. (2008). Curah Hujan dan Potensi Bencana Gerakan Tanah. 1–7.

Badan Meteorologi, Klimatologi, dan G. (BMKG). (2023). Buletin Hujan Bulanan – Updated Desember 2023 - Buletin IklimNo Title. https://www.bmkg.go.id/iklim/buletin-iklim/buletin-hujan-bulanan-updated-desember-2023

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system.

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-Augu, 785–794. https://doi.org/10.1145/2939672.2939785

Dietterich, T. (2000). Ensemble Methods in Machine Learning BT - Lecture Notes in Computer Science. Lecture Notes in Computer Science, 1857(Chapter 1), 1–15. http://dx.doi.org/10.1007/3-540-45014-9_1%5Cnpapers2://publication/doi/10.1007/3-540-45014-9_1

Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10), 78–87. https://doi.org/10.1145/2347736.2347755

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37–53. https://doi.org/10.1609/aimag.v17i3.1230

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451

Ha, J., Kambe, M., & Pe, J. (2011). Data Mining: Concepts and Techniques. In Data Mining: Concepts and Techniques. https://doi.org/10.1016/C2009-0-61819-5

Hochachka, wesley m., Caruana, R., Fink, D., Munson, A., Riedewald, M., Sorokina, D., & Kelling, S. (2007). Data‐Mining Discovery of Pattern and Process in Ecological Systems. The Journal of Wildlife Management, 71(7), 2427–2437. https://doi.org/10.2193/2006-503

Larose, D. T., & Larose, C. D. (2014). Discovering Knowledge in Data. Discovering Knowledge in Data. https://doi.org/10.1002/9781118874059

Mishra, D. P., Jena, S., Senapati, R., Panigrahi, A., & Salkuti, S. R. (2023). Global solar radiation forecast using an ensemble learning approach. International Journal of Power Electronics and Drive Systems, 14(1), 496–505. https://doi.org/10.11591/ijpeds.v14.i1.pp496-505

Mohammadi, B. (2021). A review on the applications of machine learning for runoff modeling. Sustainable Water Resources Management, 7(6), 1–11. https://doi.org/10.1007/s40899-021-00584-y

Muhaniroh, M., & Syech, R. (2021). Analisis Pengaruh Suhu Udara, Curah Hujan, Kelembaban Udara Dan Kecepatan Angin Terhadap Arah Penyebaran Dan Akumulasi Particulate Matter (Pm10): Studi Kasus Kota Pekanbaru. Komunikasi Fisika Indonesia, 18(1), 48. https://doi.org/10.31258/jkfi.18.1.48-57

Pang-Ning Tan,Michael Steinbach,Vipin Kumar, A. K. (2019). Introduction to Data Mining eBook: Global Edition. In Pearson Education Limited. https://doi.org/10.1016/b978-155558242-5/50003-6

Powers, D. M. W. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. 37–63. http://arxiv.org/abs/2010.16061

Shuang, Q., & Zhao, R. T. (2021). Water demand prediction using machine learning methods: A case study of the beijing–tianjin–hebei region in china. Water (Switzerland), 13(3), 1–16. https://doi.org/10.3390/w13030310

Syarif, I., Zaluska, E., Prugel-Bennett, A., & Wills, G. (2012). Application of bagging, boosting and stacking to intrusion detection. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7376 LNAI, 593–602. https://doi.org/10.1007/978-3-642-31537-4_46

S. Raschka, V. M. (2019). Python Machine Learning (3rd ed.).

Septiani, N. (2024). Pengaruh Suhu, Kelembaban Udara Terhadap Prediksi Curah Hujan Dan Relevansi Pada Fenomena Hujan Es Di Bandar Lampung.

Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1–2), 123–138. https://doi.org/10.3354/cr00953

Published
2025-09-30
How to Cite
Hafid, H., Rais, Z., & Rezky, A. R. R. T. (2025). KLASIFIKASI CURAH HUJAN DI KOTA MAKASSAR MENGGUNAKAN GRADIENT BOOSTING MACHINE (GBM). VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 7(2), 133-142. https://doi.org/10.35580/variansiunm386
Section
Articles