Penerapan Metode Singular Spectrum Analysis dalam Peramalan Jumlah Produksi Beras di Kabupaten Gowa
Abstract
Total rice production in Gowa Regency from January 2018 to December 2020 has decreased which is not significant every month, so it is necessary to do a forecast to anticipate food shortages in the future. This study aims to determine the yield of rice production in Gowa Regency and to model data from October 2021 to September 2022 using the Singular Spectrum Analysis (SSA) method. Based on the results of the analysis, the MAPE value obtained is 6.32% so it can be said that forecasting using the SSA method is very accurate
References
Aswi & Sukarna. (2006). Analisis deret waktu: teori dan aplikasi. Andira Publisher.
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2008). Time Series Analysis: Forecasting and Control. John Wiley & Sons.
BPS Kabupaten Gowa. (2017). Kabupaten Gowa dalam Angka 2017. BPS Kabupaten Gowa.
BPS Provinsi Sulawesi Selatan. (2021). Luas panen dan produksi beras di Provinsi Sulawesi Selatan (angka sementara 2021). BPS Provinsi Sulawesi Selatan.
Darmawan, G. (2016). Identifikasi Pola Data Curah Hujan pada Proses Grouping dalam Metode Singular Spectrum Analysis. Seminar Nasional Pendidikan Matematika, 1–7.
Ete, A. A., Suhartono, S., & Atok, R. M. (2020). SSA and ARIMA for Forecasting Number of Foreign Visitor Arrivals to Indonesia. Inferensi, 3(1), 55–63. https://doi.org/10.12962/j27213862.v3i1.6882
Golyandina, N., Nekrutkin, V., & Zhigljavsky, A. (2001). Analysis of Time Series Structure: SSA and Related Techniques. Chapman & Hall/crc. https://doi.org/10.1017/cbo9780511608339.006
Putri, A. K. (2021). Analisis Keseimbangan Produksi dan Konsumsi Beras di Kabupaten Gowa. Universitas Muhammadiyah Makassar.
Sakinah, A. M. (2012). Perbandingan Stabilitas Hasil Peramalan Suhu dengan R-Forecasting dan V-Forecasting SSA untuk Long-Horizon. Universitas Padjajaran. Bandung.
Zhang, T., Wang, K., & Zhang, X. (2015). Modeling and analyzing the transmission dynamics of HBV epidemic in Xinjiang, China. PLoS ONE, 10(9), 1–14. https://doi.org/10.1371/journal.pone.0138765